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Abstract—In this paper the system analysis of modern wireless SPN are unknown to most wireless researchers, unaware that
systems is simplified by providing simple yet powerful models for Markov chains are a subset of SPN.
the wireless channel in the environment of higher layer abstract A number of promising SPN approaches already exist in all

system descriptions with generalized stochastic Petri nets (SPN) fields of wirel S
This modeling approach is capable of deriving performance .|e S of wireless communications, e.g., resource manageme

metrics in terms of packet delays even under heterogeneous,in cellular wireless systems [9], multihop (relay) transmi
asymmetric, bursty and underutilized traffic conditions, because sions [10], ad-hoc networks [11] and concrete technologies
they are easy to model with SPN. The missing link in wireless |ike |EEE 802.16 [12], IEEE 802.11 [13]. A simple two-
systems are suitable channel models, which can now be used aga4q fajlure/recovery DSPN model for the GSM channel has

a plug-in submodel inside a larger composite Petri net model. . . . o
A number of models are proposed, starting from the finite- °€€N Proposed in [14]. Links to higher layers exist in works

state Markov channel model approach. Performance results fo for TCP models [15]. And there is still a high demand for
a multihop relayed transmission under varied traffic load show recent technologies like LTE [16] and other IMT-Advanced

the utility of this modeling approach. systems [17]. Especially 1ISO/OSI layer two (medium ac-
Index Terms—stochastic Petri nets, channel models, Markov Cess control) can benefit from GSPN analysis methods. The
channel, relay, multihop importance of packet delay aware models for resource and

packet scheduling [18] and radio resource management [19]
is obvious. Most works study the maximum throughput only
with a full buffer assumption, because their methodology is
HE nature of wireless systems is dominated by thgnable to model traffic. Therefore these studies assume the
channel between antennas and channel characteristics@grload condition and cannot provide finite delay results.
subject to complex phenomena. Pathloss, fading, shadowingin this paper a link to the physical layer is introduced,
multipath propagation and multipoint to multipoint trarism by modeling the radio channel in a way suitable to be used
sion are effects and dimensions engineers have to take igto a building block in larger composite Petri nets. Several
account in the physical layer models. On the top end approaches are presented, but they basically fit into thenseh
the ISO/OSI model, the performance is evaluated by terrgsfinite-state Markov channels [20].
of QoS contract satisfaction under diverse traffic condio  The paper is organized as follows: Section Il introduces

Undoubtedly there is a huge gap in the theoretic supportifor ghe basics of stochastic Petri nets, followed by the sedion
layers in one model. System level analysis therefore is ondyiitable channel models. Wireless system models basedson th
realistic if a simulation based approach is taken, where ghannel models are treated in section IV. Performancetsesul
effects and algorithms are implemented in software [1].  are presented in section V before ending with the conclusion
The medium access control (MAC) layer bridges the phys-
ical with the higher layers, and allows a cross layer extansi
where required [2]. On the upper service access points to the
MAC layer, the packet delay is already reasonably usable asPetri nets (PN) is a graphical and mathematical tool siétabl
performance measure for UDP flows [3]. to model complex systems with a state. Systems can be
In need for a theoretic system model to capture physida¢ described and studied when they are concurrent, asyn-
layer effects abstract enough for higher layers, Petri fldts chronous, distributed, deterministic or stochastic. fagses
are a promising way. Their advantage is the combinationef tbf PN are finite state machines and marked graphs used
flexibility of a Turing-complete automaton with the power ofor DSP algorithms [21]. Many aspects of flow charts and
stochastic Markov chain analysis. Stochastic Petri n@®N}S description languages can be modeled with PN. There isyplent
and generalized SPN (GSPN) [5] have become a useful tadlliterature on the underlying graph theory, liveness ysial
for adept researches in computer science. Results areebitaireachability set and other properties [4]. A PN is defined as
by numeric tools and do not require simulation. Useful tooks directed, weighted, bipartite graph having two sets ofesod
for GSPN analysis exist [6]. In recent years, GSPN have beedlled places(P;) and transitions (7). Places are drawn as
used occasionally to model communications systems [7], [&]rcles, transitions as boxes. Input arcs connect ceftain 7T}
but a widespread use is not observed, mainly due to fact thth weightw;;, output arcs connedt; to P; with multiplicity

I. INTRODUCTION

Il. PETRINETS



v;;. Together they form the incidence matiix = [v;; — w;;] A G1 A
When a PN consists o/ transitions andV places,D is a
M x N matrix (m rows, n columns). Places can contain an TO1 T10
integer number otokens(dots), all of which constitute the

state calledmarking m. The initial markingm, is the start GO

state. The notation-P; = m; means the current number OfFig. 1: SPN of the Gilbert-Elliot channel. The stafe>1 can

tokens_ In place”;. An atomic actionlis théring of a ransition e seq in state-dependent formulations of SPN properties.
T; which changes the marking to

Mk = 1Mk—1 + th—1 - D (1) , o . .
) o . o ] o In this approach, only fading is considered frequency sigkec
with the firing vectort;, _, which is all zero except a single "1’ 5nq time varying. Shadowing is location dependent and cor-
at the j.th index. For further details of firing rules, didagl | g|ated [23], but without mobility it can be assumed constan

arcs, liveness and reachability see [4]. At the receiver, after procession of all the stages abogeasi
power and interference plus noise result in the signal-to-
A. Stochastic Petri Nets noise+interference (SINR) ratio. Depending on the modula-

Stochastic PN (SPN) extend the paradigm to model timéon&coding scheme used (with adaptive modulation&coding
essentially by assigning each transition a firing rate (i tftMC), in information theoretic sense the channel can carry
continuous time case (CT)) or a firing probability (in the-dis2 characteristic certain data rate given as mutual infoonat
crete time case (DT)). Here we will focus on the CT case onM!) in bit/s/Hz. Its capacity per antenna is limited by the
Then the firing rates are given by = )i, ..., \,, which can Shannon bound. Depending 6 N'R andphymodebit errors
be marking-dependend; is the inverse of the average ﬁringresult .due to imperfect detection and reS|dua! errors after
time ¢;. Firing times are exponentially distributed, thereford€coding. CRC detects packet errors and on its output the
memoryless, and the resulting reachability graph (RG) foam packet error ratio (PER) can be measured. Hybrid ARQ gnd
Markov chain (MC) [5]. All arcs in the RG are annotated witfPacket ARQ blocks on layer 2 care for the retransmission
the \; of the transitionT; responsible for the state change®f erroneous packets. More effects come into it by packet
The matrix R of all arc rates can then be used to calcula@Fheduling, finite queues and TCP flow control, but this is
the steady-state solution of the MC and from that all oth&eyond the scope of channel models.
performance metrics can be obtained. The simplest model suitable in a packet level SPN approach

Generalized SPN (GSPN) combine both immediate (thid the two-state Gilbert-Elliot (GE) channel, also seenrasfb
bar) and timed transitions (empty box), which also redud4C- Its SPN equivalent is shown in Figure 1 using placas
to MC after condensing all tangible states, but offer a mu@dGo, the token position in which marks the state as "good’
higher modeling power. Priorities and weights can easily % ad’. The transition firing rates,, (into fading) andho,
annotated to immediate transition to model the outcoméidike(recovery) model the state changes from 'good’ to "bad’ and
hood of deterministic and random decisions. Determinestic  OPPOSite. They are translated from the common parameters
stochastic SPN (DSPN) also allow one enabled transition witerror @dTperioa bY EQ. 2-3.
determ.inistic (fixed) fi'ring time, denoted with a filled box. Ao = (Theriod - (1 — Perror)) ™ @)

In this paper we will not use colored PNs (CPN), as each Mot = (Tyeriod - Perror) ™! 3)

token color extends the state space by huge amounts and].ﬂg state within itself can the be used in another part of the

analytic/numeric treatment is ofteq |mp035|blg. Theraaﬁecm.t SPN to switch between transmitting or deleting packets whic
tool support for SPN and the MC is automatically determmeéire currently transmitted on the channel

and solved [6]. When the state space for numeric MalX the next level of complexity is the finite-state Markov

stolvzrs deécged.s thlet'current gm't ofdark?umd; states or;] @ channel (FSMC) [20]. It allows possible transitions betwee
standar , Simufalion can be used, based on an ex au%@'@hbor states with exponentially distributed timing dbia

repetmon_ of thetoken game trary mean value. It9( states can modek different receive
Queueing models and networks are a subset of the modeling. i< Usually being in a stakec {0, 1, ..., K—1} means

power of SPN’.I anbd rssqltsdforzzquetl;e Igngtr;] argjplnvaitir]gaving an SINR ofS in the interval [Sk, Si+1). The error
times can €aslly be derive [22], that IS why NS ap obability is then a function of thé&;, in the center of the
becoming increasingly popular for modeling communicatio

t I.
networks [7]. SPN can be used as well for modeling packeterva g — Sk + Sk+1 4
level and flow level, where a constant fluid of databiis/s k= 2 “)
is assumed while being in a state. For the Rayleigh fading channel the SINRcan be assumed

exponentially distributed [20] with pdfs (o) andp = E[S].
IIl. CHANNEL MODELS FORSPN ANALYSIS . .

Wireless channels possess a number of properties and are ps(o) =p= - cap(=op™) ©®)
influenced by many effects. Usually they are decomposed intbe mobility speed at the receiver leads to the Doppler effec
antenna gain, pathloss, slow fading, fast fading, shadpwirwhich is responsible for the rate at which state changes
multipath propagation effects, which add up in the dB domaihappen. Crossover probabilities and rates can be caldulate
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Fig. 2: SPN of the finite-state Markov channel. Explicit
version. The token location defines the state.

Fig. 3: SPN of the finite-state Markov channel. Condensed
version. There can be.(K — 1) token in each of the places.

PMI
- Pchange

Y y
from this, so that finally the Markov transition rates; can Tstay] Tup] Tan
be determined [20], which leads to the SPN transition firing
rates in Figure 2 of the same value. Like in the GE channel,
the channel stat€’ itself will be used to modulate (influence)

a property of another SPN subnet, either as error probabilit Fig. 5: SPN for modeling the distribution of phymodes

e = f(C), or as step to indicate the suitable phymode, when

an AMC scheme is used and channel quality indication (CQI)

is assumed accurate. The phymode then modulates the dajg ., the phymode distribution on a channel is of interest,

raFe of the wireless system during the time the channel is éng in order to model the capacity of a link (M), the model
this state. in Figure 5 is convenient. It is similar to Figure 3 in that

Figure 3 shows a co_ndensed vers_ion of the FSMC. Het‘r?e weights of the transition®;,, and 7, must be defined
the number of tokens in Placgs define the current state r?arking—dependent as a function $Py

(K .states altogethe_r). Any depender)t. SPN structure is simp YWhen the change of one phymode to another depends on the
defined as a function offPs. The firing rates), and )4 . . ,
previous phymode (correlated model), then Figure 6 prevade

;oerﬁtnhee dtﬁgrﬁﬂ% ggélgntugsanﬂd going down must be way to keep track of the previous state, in order to calculze
g-dep transition weights irff'0 to 7'5 which determine the probability

PMI2

K2 of each phymode.
Au(#Ps) = Z Akt - (#Ps = k) (6) It is currently considered hard to model a frequency se-
k=0 lective OFDMA channel, not because of the correlation of
K2 neighbor phymodes (which can be modeled), but due to the
Ma(#Ps) = > Meyrk- (#Ps =k +1) (7)  complexity of the state space.160 subchannels in LTE each
k=0 have their individual phymode (let's assume with 5 différen

where (#Ps = k) is the boolean operatof#Ps = k) = 1 levels), then the set of markings consistss4t° states, which
if #Ps = k and 0 else). State dependent definitions in SP intractable by any MC solver, and only simulation is pessi
are allowed for all properties that are resolved at the tirhe ble. It is highly recommended to reduce such systems to fewer
the creation of the RG. So it can be a transition firing ratspbchannels and phymode levels, which still allows intergs
weight and priority (integer, i) of an immediate transitighe principal analysis of systems. SPN are invaluable for cases
multiplicity (i) of an arc, etc. where the MC state space is bounded and the structural
The model before is limited to slow to medium fadingcomplexity cannot be expressed by simple multidimensional
because transitions only occur between neighboring stétes birth-death processes, like shown in the following section
allow for a more rapid change, the full incidence matkix
of this subnet can be utilized (full meshed PN), while the
model before had only two nonzero entries per rowDn
The transition rated can be calculated by accumulating the
transition frequency from one interval to another in a diser
time sampled system, which is easiest by means of simulation
If an uncorrelated fading model is sufficient, then Figure 4
provides an SPN solution. The probability of each level is Tdel
easily controlled by the weights of the immediate tranagio ] .
following P; while the change rate is determined By, Fig. 6: SPN model to keep track of a previous state

Tbackup
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Fig. 8: Performance results of the SPN analysis of the single
IV. SPN MODELS OFWIRELESSSYSTEMS hop system with deterministic (D) or exponential (M) firing

Wireless system models can be built using the chanr#nes of7't;qme.
models above by using the state (marking), i.e., the number o
tokens in the characteristic places in the marking-depende
formulations of transition rates, weights, arc multigiies (i) In this model, priorities are in descending order with the
or priorities (i). intention to let hop 2 preempt first before new packets come

Figure 7 shows an example of such a system. It corif:
pares a singlehop wireless transmission (left) with a raolfii
transmission (right) in a relay-enhanced scenario likewkno
from IMT-Advanced systems [17]. The channels are modeled
as two separate subnets of type as in Figure 3, where the
marking #PS1 and # PS2 define the multiplicity of the arc
from the frame clock generatoff,.m.) to the container of ~ The system model has been analyzed by Markov chain anal-
available resourceg, .. It produces a new bunch of resourcesis of the underlying MC (defined by the RG) of the SPN. The
blocks within the interarrival time of f,ame. Tirame) iS @ Parameters used for this numeric example wefe:= 3 for
hatched box because we can allow an arbitrary timing. Heffee channel state levels witf [, = 0, M1, =1, M1, =2
we use either an exponential interarrival time (for modglinrepresenting the resource capacity proportional to Hitg/s
random packet length of that kind) or deterministic constahihe transitions were adjusted so tha{#PS = 0) = 5%,
time (for modeling constant-size packets and frame sifé®. P(#PS = 1) = 19%, P(#PS = 2) = 86%, i.e., with a
traffic (packet) interarrival time is exponential, puttipgckets 5% outage probability and a mean &fi#PS] = 1.714. The
(tokens) into queu&) or Q1 correspondingly. In each framechannel coherence time is chosen tdlbg ica = 10 Trame-
the servefTs can serve as many packets as there are resourceigure 8 shows results for the study of different traffic
for it in P,..,. When @ becomes empty before all resourcesrrival rates to the systems, normalized to the capacity of
in P,.., are used, they become 'unused’ and will be cleardbie system E[#PS]). The results reveal the queueing nature
by ..., which has a lower priority thafi's. The supply place of random traffic with a server given by the wireless links.
P, is necessary to bound the state space. As a rule-of-thuri,a certain maximum load, the queue grows asymptotically
the supplys should be ten times larger than the expected quet infinity, an unstable overload condition. We derive the
occupancy inQ. necessity to introduce traffic separation into real-time best

The model shown right of Figure 7 extends the single haffort by means of a static priority scheduler [25], which
model with another wireless link, so thdl; becomes the is also easy to model with SPN. Because all the MC state
access on hop 1 andls, the relay access on hop 2. Bothprobabilities are known after analysis, it is easy to alstaiob
channels are independent, fading, but with the same aver#g@ probability density function (PDF) or CDF of the number
capacity. This way the performance of the multihop system c&f tokens in any place and therefore PDF and CDF of packet
be analyzed and compared with the singlehop system. It af#igeue occupancy and packet delays.
allows further studies, e.g., a flow control [24] to limit ass Figure 9 shows results of the multihop model of Figure 7,
to the relay packet buffer i92. This is very useful, becauseWwith T’,.qm. as exponential. Without flow control, as analyzed
one of the links (hop 1 or hop 2) is always a bottleneck, eithbere, the first hop performs the same as in the single- and
in up- or downlink. For measurements the following equatiomultihop case E[#Q1] = E[#Q)]. The second hop is almost

I{Ts2} = 4, T{ T2} = 3,11{Ts1} = 2, T{ Ty } = 1
(10)

V. NUMERIC PERFORMANCERESULTS

derived from thep-invariant of the lower loop is useful: identical to hop 1, which means that the traffic i@ can
also be assumed as memoryless (exponential interartive) ti
#Q1 +#Q2 + #Poup = s = (8) because its queueing statistics are those 8f A//1 queue.

E#Q1 4+ #Q2] = s — E[#Pqyp) (9) Both hops together approximately perform with twice the
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16
delay of a singlehop system. This is not a big surprise, b[ut]
it has been shown under channel conditions with outage a[:lua
different phymode levels, i.e., an AMC situation common fo
all modern wireless networks. A transient analysis as shown
in Figure 10 is easy to obtain by current tools and anothﬁré]
benefit of this method.

VI. CONCLUSION [19]

A modeling approach using stochastic Petri nets (SPN) was
proposed for studying the performance of wireless systems.
The main contribution is the offer of different channel misde (2]
which can readily be used as underlying Markov process
for more complex structures built with SPN. As a result 1]
becomes convenient to plug in one of these models and this
enables to concentrate on the interesting algorithms on th
MAC layer like resource allocation, scheduling, and thelgtu
of packet delays in wireless systems. Also important is t#e&!
introduction of a static priority scheduler [25] and a rbla
flow-control [24], [26] for the bottlenecks in wireless sgsts.  [24]
Future work will make more use of this and can provide an-
alytic/numeric results where otherwise only simulationwdo [>s;
have been used.
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