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Abstract—In this paper the system analysis of modern wireless
systems is simplified by providing simple yet powerful models for
the wireless channel in the environment of higher layer abstract
system descriptions with generalized stochastic Petri nets (SPN).
This modeling approach is capable of deriving performance
metrics in terms of packet delays even under heterogeneous,
asymmetric, bursty and underutilized traffic conditions, because
they are easy to model with SPN. The missing link in wireless
systems are suitable channel models, which can now be used as
a plug-in submodel inside a larger composite Petri net model.
A number of models are proposed, starting from the finite-
state Markov channel model approach. Performance results for
a multihop relayed transmission under varied traffic load show
the utility of this modeling approach.

Index Terms—stochastic Petri nets, channel models, Markov
channel, relay, multihop

I. I NTRODUCTION

T HE nature of wireless systems is dominated by the
channel between antennas and channel characteristics are

subject to complex phenomena. Pathloss, fading, shadowing,
multipath propagation and multipoint to multipoint transmis-
sion are effects and dimensions engineers have to take into
account in the physical layer models. On the top end of
the ISO/OSI model, the performance is evaluated by terms
of QoS contract satisfaction under diverse traffic conditions.
Undoubtedly there is a huge gap in the theoretic support for all
layers in one model. System level analysis therefore is only
realistic if a simulation based approach is taken, where all
effects and algorithms are implemented in software [1].

The medium access control (MAC) layer bridges the phys-
ical with the higher layers, and allows a cross layer extension
where required [2]. On the upper service access points to the
MAC layer, the packet delay is already reasonably usable as
performance measure for UDP flows [3].

In need for a theoretic system model to capture physical
layer effects abstract enough for higher layers, Petri nets[4]
are a promising way. Their advantage is the combination of the
flexibility of a Turing-complete automaton with the power of
stochastic Markov chain analysis. Stochastic Petri nets (SPN)
and generalized SPN (GSPN) [5] have become a useful tool
for adept researches in computer science. Results are obtained
by numeric tools and do not require simulation. Useful tools
for GSPN analysis exist [6]. In recent years, GSPN have been
used occasionally to model communications systems [7], [8],
but a widespread use is not observed, mainly due to fact that

SPN are unknown to most wireless researchers, unaware that
Markov chains are a subset of SPN.

A number of promising SPN approaches already exist in all
fields of wireless communications, e.g., resource management
in cellular wireless systems [9], multihop (relay) transmis-
sions [10], ad-hoc networks [11] and concrete technologies
like IEEE 802.16 [12], IEEE 802.11 [13]. A simple two-
state failure/recovery DSPN model for the GSM channel has
been proposed in [14]. Links to higher layers exist in works
for TCP models [15]. And there is still a high demand for
recent technologies like LTE [16] and other IMT-Advanced
systems [17]. Especially ISO/OSI layer two (medium ac-
cess control) can benefit from GSPN analysis methods. The
importance of packet delay aware models for resource and
packet scheduling [18] and radio resource management [19]
is obvious. Most works study the maximum throughput only
with a full buffer assumption, because their methodology is
unable to model traffic. Therefore these studies assume the
overload condition and cannot provide finite delay results.

In this paper a link to the physical layer is introduced,
by modeling the radio channel in a way suitable to be used
as a building block in larger composite Petri nets. Several
approaches are presented, but they basically fit into the scheme
of finite-state Markov channels [20].

The paper is organized as follows: Section II introduces
the basics of stochastic Petri nets, followed by the sectionon
suitable channel models. Wireless system models based on this
channel models are treated in section IV. Performance results
are presented in section V before ending with the conclusion.

II. PETRI NETS

Petri nets (PN) is a graphical and mathematical tool suitable
to model complex systems with a state. Systems can be
be described and studied when they are concurrent, asyn-
chronous, distributed, deterministic or stochastic. Subclasses
of PN are finite state machines and marked graphs used
for DSP algorithms [21]. Many aspects of flow charts and
description languages can be modeled with PN. There is plenty
of literature on the underlying graph theory, liveness analysis,
reachability set and other properties [4]. A PN is defined as
a directed, weighted, bipartite graph having two sets of nodes
called places(Pi) and transitions (Tj). Places are drawn as
circles, transitions as boxes. Input arcs connect certainPi to Tj

with weightwij , output arcs connectTj to Pi with multiplicity
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vij . Together they form the incidence matrixD = [vij −wij ]
When a PN consists ofM transitions andN places,D is a
M × N matrix (m rows, n columns). Places can contain an
integer number oftokens(dots), all of which constitute the
state calledmarking ~m. The initial marking ~m0 is the start
state. The notation#Pi = mi means the current number of
tokens in placePi. An atomic action is thefiring of a transition
Tj which changes the marking to

~mk = ~mk−1 + ~tk−1 ·D (1)

with the firing vector~tk−1 which is all zero except a single ’1’
at the j.th index. For further details of firing rules, disabling
arcs, liveness and reachability see [4].

A. Stochastic Petri Nets

Stochastic PN (SPN) extend the paradigm to model time,
essentially by assigning each transition a firing rate (in the
continuous time case (CT)) or a firing probability (in the dis-
crete time case (DT)). Here we will focus on the CT case only.
Then the firing rates are given by~Λ = λ1, ..., λm which can
be marking-dependent.λj is the inverse of the average firing
time tj . Firing times are exponentially distributed, therefore
memoryless, and the resulting reachability graph (RG) forms a
Markov chain (MC) [5]. All arcs in the RG are annotated with
the λj of the transitionTj responsible for the state change.
The matrixR of all arc rates can then be used to calculate
the steady-state solution of the MC and from that all other
performance metrics can be obtained.

Generalized SPN (GSPN) combine both immediate (thick
bar) and timed transitions (empty box), which also reduce
to MC after condensing all tangible states, but offer a much
higher modeling power. Priorities and weights can easily be
annotated to immediate transition to model the outcome likeli-
hood of deterministic and random decisions. Deterministicand
stochastic SPN (DSPN) also allow one enabled transition with
deterministic (fixed) firing time, denoted with a filled box.

In this paper we will not use colored PNs (CPN), as each
token color extends the state space by huge amounts and an
analytic/numeric treatment is often impossible. There is decent
tool support for SPN and the MC is automatically determined
and solved [6]. When the state space for numeric matrix
solvers exceeds the current limit of around106 states on a
standard PC, simulation can be used, based on an exhaustive
repetition of thetoken game.

Queueing models and networks are a subset of the modeling
power of SPN, and results for queue length and waiting
times can easily be derived [22], that is why SPNs are
becoming increasingly popular for modeling communication
networks [7]. SPN can be used as well for modeling packet
level and flow level, where a constant fluid of data inbits/s
is assumed while being in a state.

III. C HANNEL MODELS FORSPN ANALYSIS

Wireless channels possess a number of properties and are
influenced by many effects. Usually they are decomposed into
antenna gain, pathloss, slow fading, fast fading, shadowing,
multipath propagation effects, which add up in the dB domain.

Fig. 1: SPN of the Gilbert-Elliot channel. The state#G1 can
be used in state-dependent formulations of SPN properties.

In this approach, only fading is considered frequency selective
and time varying. Shadowing is location dependent and cor-
related [23], but without mobility it can be assumed constant.
At the receiver, after procession of all the stages above, signal
power and interference plus noise result in the signal-to-
noise+interference (SINR) ratio. Depending on the modula-
tion&coding scheme used (with adaptive modulation&coding,
AMC), in information theoretic sense the channel can carry
a characteristic certain data rate given as mutual information
(MI) in bit/s/Hz. Its capacity per antenna is limited by the
Shannon bound. Depending onSINR andphymodebit errors
result due to imperfect detection and residual errors after
decoding. CRC detects packet errors and on its output the
packet error ratio (PER) can be measured. Hybrid ARQ and
packet ARQ blocks on layer 2 care for the retransmission
of erroneous packets. More effects come into it by packet
scheduling, finite queues and TCP flow control, but this is
beyond the scope of channel models.

The simplest model suitable in a packet level SPN approach
is the two-state Gilbert-Elliot (GE) channel, also seen as on-off
MC. Its SPN equivalent is shown in Figure 1 using placesG1

andG0, the token position in which marks the state as ’good’
or ’bad’. The transition firing ratesλ10 (into fading) andλ01

(recovery) model the state changes from ’good’ to ’bad’ and
opposite. They are translated from the common parameters
Perror andTperiod by Eq. 2-3.

λ10 = (Tperiod · (1− Perror))
−1 (2)

λ01 = (Tperiod · Perror)
−1 (3)

The state within itself can the be used in another part of the
SPN to switch between transmitting or deleting packets which
are currently transmitted on the channel.

The next level of complexity is the finite-state Markov
channel (FSMC) [20]. It allows possible transitions between
neighbor states with exponentially distributed timing of arbi-
trary mean value. ItsK states can modelK different receive
conditions. Usually being in a statek ∈ {0, 1, ...,K−1} means
having an SINR ofS in the interval [Sk, Sk+1). The error
probability is then a function of theSk in the center of the
interval.

Sk =
Sk + Sk+1

2
(4)

For the Rayleigh fading channel the SINRS can be assumed
exponentially distributed [20] with pdfpS(σ) andρ = E[S].

pS(σ) = ρ−1 · exp(−σρ−1) (5)

The mobility speed at the receiver leads to the Doppler effect
which is responsible for the rate at which state changes
happen. Crossover probabilities and rates can be calculated
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Fig. 2: SPN of the finite-state Markov channel. Explicit
version. The token location defines the state.

Fig. 3: SPN of the finite-state Markov channel. Condensed
version. There can be0..(K − 1) token in each of the places.

from this, so that finally the Markov transition ratesλij can
be determined [20], which leads to the SPN transition firing
rates in Figure 2 of the same value. Like in the GE channel,
the channel stateC itself will be used to modulate (influence)
a property of another SPN subnet, either as error probability
ǫ = f(C), or as step to indicate the suitable phymode, when
an AMC scheme is used and channel quality indication (CQI)
is assumed accurate. The phymode then modulates the data
rate of the wireless system during the time the channel is in
this state.

Figure 3 shows a condensed version of the FSMC. Here
the number of tokens in PlacePS define the current state
(K states altogether). Any dependent SPN structure is simply
defined as a function of#PS . The firing ratesλu and λd

for the transitionsTu going up andTd going down must be
defined marking-dependent as

λu(#PS) =

K−2∑

k=0

λk,k+1 · (#PS = k) (6)

λd(#PS) =

K−2∑

k=0

λk+1,k · (#PS = k + 1) (7)

where(#PS = k) is the boolean operator ((#PS = k) = 1
if #PS = k and 0 else). State dependent definitions in SPN
are allowed for all properties that are resolved at the time of
the creation of the RG. So it can be a transition firing rate,
weight and priority (integer, i) of an immediate transition, the
multiplicity (i) of an arc, etc.

The model before is limited to slow to medium fading,
because transitions only occur between neighboring states. To
allow for a more rapid change, the full incidence matrixD
of this subnet can be utilized (full meshed PN), while the
model before had only two nonzero entries per row inD.
The transition rated can be calculated by accumulating the
transition frequency from one interval to another in a discrete-
time sampled system, which is easiest by means of simulation.

If an uncorrelated fading model is sufficient, then Figure 4
provides an SPN solution. The probability of each level is
easily controlled by the weights of the immediate transitions
following Pi while the change rate is determined byTclock.

Fig. 4: SPN of uncorrelated fading

Fig. 5: SPN for modeling the distribution of phymodes

If only the phymode distribution on a channel is of interest,
e.g. in order to model the capacity of a link (MI), the model
in Figure 5 is convenient. It is similar to Figure 3 in that
the weights of the transitionsTup and Tdn must be defined
marking-dependent, as a function of#PMI .

When the change of one phymode to another depends on the
previous phymode (correlated model), then Figure 6 provides a
way to keep track of the previous state, in order to calculatethe
transition weights inT0 to T5 which determine the probability
of each phymode.

It is currently considered hard to model a frequency se-
lective OFDMA channel, not because of the correlation of
neighbor phymodes (which can be modeled), but due to the
complexity of the state space. If100 subchannels in LTE each
have their individual phymode (let’s assume with 5 different
levels), then the set of markings consists of5100 states, which
is intractable by any MC solver, and only simulation is possi-
ble. It is highly recommended to reduce such systems to fewer
subchannels and phymode levels, which still allows interesting
principal analysis of systems. SPN are invaluable for cases
where the MC state space is bounded and the structural
complexity cannot be expressed by simple multidimensional
birth-death processes, like shown in the following section.

Fig. 6: SPN model to keep track of a previous state
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Fig. 7: SPN of a wireless system. Left: singlehop. Right: two-
hop relay transmission

IV. SPN MODELS OFWIRELESSSYSTEMS

Wireless system models can be built using the channel
models above by using the state (marking), i.e., the number of
tokens in the characteristic places in the marking-dependent
formulations of transition rates, weights, arc multiplicities (i)
or priorities (i).

Figure 7 shows an example of such a system. It com-
pares a singlehop wireless transmission (left) with a multihop
transmission (right) in a relay-enhanced scenario like known
from IMT-Advanced systems [17]. The channels are modeled
as two separate subnets of type as in Figure 3, where the
marking#PS1 and#PS2 define the multiplicity of the arc
from the frame clock generator (Tframe) to the container of
available resourcesPres. It produces a new bunch of resource
blocks within the interarrival time ofTframe. Tframe) is a
hatched box because we can allow an arbitrary timing. Here
we use either an exponential interarrival time (for modeling
random packet length of that kind) or deterministic constant
time (for modeling constant-size packets and frame sizes).The
traffic (packet) interarrival time is exponential, puttingpackets
(tokens) into queueQ or Q1 correspondingly. In each frame
the serverTS can serve as many packets as there are resources
for it in Pres. WhenQ becomes empty before all resources
in Pres are used, they become ’unused’ and will be cleared
by Tun, which has a lower priority thanTS . The supply place
Psup is necessary to bound the state space. As a rule-of-thumb,
the supplys should be ten times larger than the expected queue
occupancy inQ.

The model shown right of Figure 7 extends the single hop
model with another wireless link, so thatTS1 becomes the
access on hop 1 andTS2 the relay access on hop 2. Both
channels are independent, fading, but with the same average
capacity. This way the performance of the multihop system can
be analyzed and compared with the singlehop system. It also
allows further studies, e.g., a flow control [24] to limit access
to the relay packet buffer inQ2. This is very useful, because
one of the links (hop 1 or hop 2) is always a bottleneck, either
in up- or downlink. For measurements the following equation
derived from thep-invariant of the lower loop is useful:

#Q1 + #Q2 + #Psup = s ⇒ (8)

E[#Q1 + #Q2] = s− E[#Psup] (9)
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Fig. 8: Performance results of the SPN analysis of the single-
hop system with deterministic (D) or exponential (M) firing
times ofTframe.

In this model, priorities are in descending order with the
intention to let hop 2 preempt first before new packets come
in:

Π{TS2} = 4,Π{Tun2} = 3,Π{TS1} = 2,Π{Tun1} = 1
(10)

V. NUMERIC PERFORMANCERESULTS

The system model has been analyzed by Markov chain anal-
ysis of the underlying MC (defined by the RG) of the SPN. The
parameters used for this numeric example were:K = 3 for
three channel state levels withMI0 = 0, MI1 = 1, MI2 = 2
representing the resource capacity proportional to bits/s/Hz.
The transitions were adjusted so thatP (#PS = 0) = 5%,
P (#PS = 1) = 19%, P (#PS = 2) = 86%, i.e., with a
5% outage probability and a mean ofE[#PS] = 1.714. The
channel coherence time is chosen to beTperiod = 10 ·Tframe.

Figure 8 shows results for the study of different traffic
arrival rates to the systems, normalized to the capacity of
the system (E[#PS]). The results reveal the queueing nature
of random traffic with a server given by the wireless links.
At a certain maximum load, the queue grows asymptotically
to infinity, an unstable overload condition. We derive the
necessity to introduce traffic separation into real-time and best
effort by means of a static priority scheduler [25], which
is also easy to model with SPN. Because all the MC state
probabilities are known after analysis, it is easy to also obtain
the probability density function (PDF) or CDF of the number
of tokens in any place and therefore PDF and CDF of packet
queue occupancy and packet delays.

Figure 9 shows results of the multihop model of Figure 7,
with Tframe as exponential. Without flow control, as analyzed
here, the first hop performs the same as in the single- and
multihop case,E[#Q1] = E[#Q]. The second hop is almost
identical to hop 1, which means that the traffic intoQ2 can
also be assumed as memoryless (exponential interarrival time),
because its queueing statistics are those of aM/M/1 queue.
Both hops together approximately perform with twice the
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delay of a singlehop system. This is not a big surprise, but
it has been shown under channel conditions with outage and
different phymode levels, i.e., an AMC situation common for
all modern wireless networks. A transient analysis as shown
in Figure 10 is easy to obtain by current tools and another
benefit of this method.

VI. CONCLUSION

A modeling approach using stochastic Petri nets (SPN) was
proposed for studying the performance of wireless systems.
The main contribution is the offer of different channel models
which can readily be used as underlying Markov process
for more complex structures built with SPN. As a result it
becomes convenient to plug in one of these models and this
enables to concentrate on the interesting algorithms on the
MAC layer like resource allocation, scheduling, and the study
of packet delays in wireless systems. Also important is the
introduction of a static priority scheduler [25] and a reliable
flow-control [24], [26] for the bottlenecks in wireless systems.
Future work will make more use of this and can provide an-
alytic/numeric results where otherwise only simulation would
have been used.
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