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ABSTRACT

In the paper retiming of DSP algorithms exhibiting mul-
tirate behavior is treated. Using the non-ordinary marked
graph model and the reachability theory, we provide a new
condition for valid retiming of multirate graphs. We show
that for a graph with » nodes the reachability condition
can be split into the reachability condition for the topolo-
gically-equivalent unit-rate graph (all rates set to one), and
(n® —n)/2 rate-dependent conditions. Using this property a
class of equivalent graphs of reduced complexity is introdu-
ced which are equivalent in terms of retiming. Additionally,
the circuit-based necessary condition for valid retiming of
multirate graphs is extended for the sufficient part.

1. INTRODUCTION

Retiming was introduced as a technique to optimize hard-
ware circuits by redistributing registers without affecting
functionality [1]. Retiming is also useful for DSP software
design. It changes precedence constraints among instruc-
tions or tasks, and can improve single-processor [2] and
multiprocessor [3,4] schedules. In both cases, hardware and
software design, marked graph can be used as an appro-
priate model of computation, and retiming is a transforma-
tion changing the distribution of tokens on arcs.

This paper extends retiming principles to non-ordinary
marked graphs, characterized by nodes consuming and pro-
ducing one or more tokens at each firing. Non-ordinary
marked graphs [5] are equivalent to synchronous data-flow
graphs [6] and a special case of computation graphs [7]. Ne-
cessity for this work emerged during development of a com-
mercial DSP code synthesis tool with support for multirate
processing.

Introduction of rates is not a straightforward extension
of the ordinary case. The main difference lies in the inci-
dence matrix which is not totally unimodular in the non-
ordinary case. Whereas in the ordinary case the solution for
the retiming vector can be found using linear programming
(LP), for non-ordinary marked graphs integer linear pro-
gramming (ILP) has to be used. Additionally, the ordinary
token conservation theorem is not valid anymore, limiting
the applicability of numerous useful results developed for
the ordinary case.

In the past retiming was treated mostly as ordinary (unit-

rate) retiming. Only marginal treatment of non-ordinary
(multirate) retiming can be found (e.g. in [3]).

The focus of this paper is on reachability of non-ordinary
marked graphs. It continues along the work of Teruel et al.
[8], and provides new reachability results useful for retiming
of multirate DSP algorithms.

After the introduction, we revise the background and in-
troduce the notation. In Section 3 the relation between
retiming and reachability is discussed and the existing re-
achability results are reviewed. Section 4 introduces the
rate equalization transformation which simplifies the pre-
sentation of the reachability results. Main contribution of
the paper is the new reachability theorem presented in Sec-
tion 5. Using the theorem a new equivalence transformation
for retiming is presented in Section 6. Optimization using
retiming is discussed in Section 7. Finally, Section 8 pre-
sents the conclusions.

2. BACKGROUND AND NOTATION

We assume that the underlying DSP algorithm can be repre-
sented as a double-weighted directed graph (marked graph)
G ={V,E,W,M}, with n nodes v € V and m arcs ¢ € F
which model the processing functions and their connec-
tions, respectively. We assign a pair of nonnegative inte-
gers w(e) = (wy(e),w_(e)) € W, and a nonnegative inte-
ger number m(e) € M of tokens to each arc e. Vector W is
called the rate vector, and M is the marking of the graph.
The incidence matrix B = [b;;] is an n X m matrix with
entry bi; = w4 (j) (bij = —w—(j)) if arc j leaves (meets)
node i. The entry is zero otherwise. Matrix B, (B_) will
denote the matrix b;; = w4 (j) (bsj = w—(j)) where arc j
leaves (meets) node i. The left annulator of matrix BT is
the g-vector, i.e. BTqg =0 [6].

If all rates of the marked graph are equal to one, the
graph is called ordinary. Graph G = (V,E,1,M) is the
ordinary topological equivalent of graph G = (V, E, W, M),
and is obtained by setting all rates of the original graph to
value one. Its incidence matrix is denoted B.

Circuit matrix C of a graph is a matrix having as rows
all solutions of Bx = 0. The fundamental circuit matrix Cy
is an (m — n + 1) X m matrix of linearly independent rows

of C.

Firing of node v is legal if m(e) > w_(e), for all arcs
e meeting node v. The activation vector Uy is an n x 1



vector of » — 1 zeros and a single one at the position of the
activated node. The change of the marking at activation Uy
is described by the state equation My = Mp_, —|—BTUk, k=
1,2,.... In the sequel we shall assume that only live graphs
are treated, i.e. at each moment at least one node of the
graph can be fired.

3. REACHABILITY AND RETIMING

The theoretical base for the retiming transformation is de-
terminacy of computation graphs [7]. Determinacy guaran-
tees that the sequence of tokens appearing on each arc is
independent of the firing sequence, as long as the firing is
valid. As a consequence, any marking obtained by valid fi-
ring of the nodes can be used as an initial marking, without
affecting functionality. Finding a new, advantageous initial
marking is in the essence of the retiming transformation.

In the theory of marked graphs the set of functionally
equivalent initial markings is denoted as the reachable set.

Definition 1: Marking M is reachable from My, if there
exists a legal firing sequence {U;,Us,...} such that M =
My + BT Zk Uj. The reachable space of My is denoted by
R(Mo).

Figure 1 presents a simple non-ordinary marked graph
with initial marking M, = (3,1,0) and the reachability
space M = R(Mp) denoted as points in the 3D space span-
ned by the marking vector (i, mz, ms). Solid directed li-
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Figure 1. Reachability Space.

nes denote marking transitions initiated by firing of a node.

The following two theorems are well known results which
provide the necessary and sufficient condition for reachabi-
lity of ordinary graphs [5].

Theorem 1 [State equation based reachability condition for
ordinary marked graphs]: Let G = (V, E, My) be an ordi-
nary graph with incidence matrix B. Marking M, is reach-

able from M, iff BTr = M, — M, has a solution.

Remark: Existence of a solution of BTr = M, — M, is
already necessary and sufficient for the existence of a legal
firing sequence {Uy,Us, ...} converting marking Mo to M,.
Theorem 2 [Circuit based reachability condition for ordinary
marked graphs]: Let G = (V, E, My) be an ordinary graph
with fundamental circuit matrix Cy. Marking M, is reach-
able from My iff C¢(M, — My) = 0.

In the case of non-ordinary marked graphs only the state
equation based reachability condition is known [8].

Theorem 8 [State equation based reachability condition for
non-ordinary marked graphs]: Let (G, M) be a non-
ordinary marked graph with incidence matrix B. Marking
M, is reachable from Mo iff BT+ = M, — M, has an integral

solution.

Main reason for the lack of an equivalent circuit-based
reachability result for non-ordinary marked graphs is the
existence and use of techniques transforming non-ordinary
to ordinary graphs. In the field of marked graphs the trans-
formation proposed by Hack [9] converts the non-ordinary
marked graph into an ordinary Petri net, thereby loosing
the advantages of the marked graph theory. An alternative
equivalence transformation was proposed by Lee [10]. This
transformation is closed in the sense that the transformed
graph is a marked graph again. Main drawbacks of this
procedure are high complexity of the transformed graph,
as well as the loss of visual correspondence to the original
graph.

4. TOKEN REDEFINITION AND GRAPH
EQUALIZATION

In order to proceed, we have to introduce some additional
definitions and transformations.

Definition 2: Token redefinition of arc e of marked graph
G = (V,E,W, M) is a transformation in which the arc input
rate wy (e), arc output rate w_(e), and marking m(e) are
multiplied by a positive value p(e), such that u(e)ws(e),
p(e)w_(e), and p(e)m(e) are integers.

Remarks: It is easy to show that token redefinition pre-
serves liveness, consistency, and the value of the ¢ vector.
Also, from Theorem 1 it is obvious that token redefinition
preserves reachability.

Definitions 3: An equalized node is a node with all rates
equal. An equalized marked graph is a graph of equalized
nodes. The n-dimensional vector of node rates s(v) of an
equalized graph will be denoted by S.

Theorem 4: Let G = (V,E,W, M) be a consistent mar-
ked graph. There exists a diagonal m X m matrix of to-
ken redefinitions u = lcm(BIq)diag(BIq)_l, such that
G, = (V,E,uW,uM) is an equalized marked graph.

Proof: If G is consistent, then B_|T_q > 0 follows. In this
case y = lcm(B}_‘q)diag (B_{q)_1 can be computed for every
graph. For every node v in G, = (V, E, uW, pM), the num-
ber of tokens processed on each arc of node v during one
iteration is equal, i.e. p(e1)w(e1)g(v) = p(e2)w(e2)g(v) for
all pairs (e1, e2) of arcs of node v, and the equalization pro-
perty of G, follows.

Graph equalization is similar to the normalization propo-
sed in [3], and was used in the context of hardware design
in [11].

5. REACHABILITY OF NON-ORDINARY
MARKED GRAPHS

The following reachability theorems are the main contribu-
tion of the paper. For the sake of brevity and simplicity,
the theorems are provided for equalized graphs. Neverthe-



less, it is easy to apply them to other marked graphs, too.
Equalization does not change the reachability condition of
the graph, and the inverse transformation of an equalized
graph always exists. So, all the results which are valid for
equalized graphs can be applied to other marked graphs
equally well.

Theorem 5 [State equation based reachability condition for
equalized non-ordinary graphs]: Let G = (V, E, S, My) be
an equalized non-ordinary graph. Marking M, is reachable
from My iff

BTr =M, — My (1)

has a solution such that

7i =7; (mod ged(si,sj)), 1<i<j<n. (2)

Proof: See Appendix A.

Remark: Theorem 5 decouples the reachability condition
into two conditions. Equation (1) is the retiming validity
condition under assumption that all rates are set to one.
Equation (2) introduces (n® — n)/2 congruental conditions
which take the rates into account.

The following theorem is the extension of Theorem 2 to
the non-ordinary case.

Theorem 6 [Circuit based reachability condition for equa-
lized non-ordinary graphs/: Let G = (V, E, S, M) be an
equalized non-ordinary graph, and C} its fundamental cir-
cuit matrix. Marking M., is reachable from M iff

Ci(M, —My)=0 (3)
and

m,(1,7) =mo(2,j) (mod ged(si,s;)), 1<i<j<m
@)
where m(4, j) is the number of tokens on a path connecting
nodes ¢ and j.

Remarks: We define the remainder marking (or R-marking)
of a path connecting nodes ¢ and j as:

mg(1, j) = m(i, j) mod ged(si, s;). (5)

Condition (4) states simply that the R-marking on any path
connecting nodes ¢ and j has to be invariant under retiming.
Figure 2 provides an example. The R-marking on the path
connecting nodes A and C is 1, and on the path connecting
nodes B and D is 2.

2,~2 3.3 4.4 3.3
~(A ~(B ~(C ~(D -

1 R-marking 2 R-markings
Figure 2. Remainder Marking.
6. RETIMING-EQUIVALENT UNIT-RATE
GRAPH

For the purpose of retiming we can modify the rates of
the multirate graph in such a way that condition (2) is

not changed and thereafter transform the graph to its unit-
rate equivalent. Figures 3, 4, and 5 provide an illustrative
example. Figure 3 presents the original multirate graph,
Figure 4 its unit-rate equivalent, and Figure 5 the retiming-
equivalent unit-rate graph.
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Figure 5. Retiming-Equivalent Unit-Rate Graph.

The greatest common divisor of all rate pairs in Eq. (2)
will not change if the rate of the leftmost node from Fig. 3
is changed from 8 to 2. The resulting graph can be further
transformed to a unit-rate equivalent with a reduced num-
ber of nodes. Whereas the graph on Figure 4 has 21 nodes,
the graph from Figure 5 has only 6.

7. OPTIMUM TOKEN DISTRIBUTION

Redistributing the tokens of a marked graph according to
some criterion is a well known problem in the theory of
marked graphs [12]. If the criterion is a linear function, we
have to minimize the weighted sum of tokens ¢ M under the
condition that the solution M, belongs to the reachability
set of My, i.e. M, € R(Mp). In the general case we get an
instance of an integer linear programming (ILP) problem

min{c"M|BTr = M — My; M,r € Z M > 0}.

For ordinary graphs the incidence matrix is totally uni-
modular which guarantees that even without the constraint
r € Z the solution for r will be integral [12], and an algo-
rithm of polynomial complexity is available. It is easy to see



that the incidence matrix of a non-ordinary marked graph
is not totally unimodular [13].

In order to show that in the non-ordinary case the op-
timum token distribution problem is an ILP problem, we
need the following theorem:

Theorem 7 [18]: Let A be an integral matrix of full row
rank. Then the polyhedron {z|z > 0; Az = b} is integral
for each integral vector b, if and only if A is unimodular.

If we take A = [[;—B7], ¢ = [M;r]", and b = Mo,
the resulting polyhedron determines the reachability space.
Matrix A is a full row rank matrix, but obviously not uni-
modular. As a consequence, the polyhedron has also non-
integer vertices and in the general case the problem cannot
be reduced to a linear programming (LP) problem.

One theoretically interesting exception is the case of an
equalized graph with rates co-prime in pairs. In this case,
according to Theorem 5 the reachability condition reduces
to BTr = M, — My, and the minimization problem reduces
to min{c" M|BTr = M — M,}. Matrix B is the incidence
matrix of the topologically equivalent unit-rate graph, and
is totally unimodular. In this special case the optimum
marking can be found using the LP algorithm. It has to be
stressed that in the case of co-prime rates the alternative
way of conversion to an equivalent unit-rate graph is of
exponential complexity.

8. CONCLUSIONS

The presented results are the first step in exploring the
theoretical foundations of the non-ordinary retiming trans-
formation. The new reachability theorems are part of the
effort to close the gap between the theory of ordinary and
non-ordinary marked graphs. One possible application is
the retiming-equivalent unit-rate transformation. We be-
lieve that additional useful applications will be found in
the future.

Our future work shall concentrate on the modification
of existing retiming algorithms in order to cover the non-
ordinary case. We have already observed that for acyclic
graphs Bellman’s equations for the shortest path can be
used for non-ordinary retiming, too. We shall continue to
work along this result.
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APPENDIX A

Proof of Theorem 5: For equalized graphs BT =
BTdiag(S), where S is the rate vector. Condition

BTy = M, — M, has integer solution (6)
is equivalent to

BTF = M, — M, has integer solution (7)
and

diag(S)r = 7 + k1”7 has integer solution for some k € Z

(8)
where 17 is a column vector of ones. From Eq. (1), uni-
modularity of B, and from rank(B) = n — 1 follows that
there is a set of integer solutions of form 7 + le,Vk cZ.
Eq. (8) is equivalent to the requirement that {k € Z|k = 7;
(mod s;),1 < i < n} is not empty. Vector S is a positive
integer vector, and T also contains only integers, so from the
Generalized Chinese Remainder Theorem [14] follows that
an integer k satisfying (8) with r integral can be found iff

i =7; (mod ged(si,s;)), 1<i<j<m. (9)
This proves the Theorem.

Proof of Theorem 6: From Theorems 1 and 2 follows that for
ordinary graphs existence of a solution for BTr = M, — Mo,
and condition Cy(M, — M) = 0 are equivalent conditions.
Using

ﬂ_fJ:m"‘(za])_mo(za])a 1§Z,J§n (10)

proves the Theorem.
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